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Abstract

Numerical analyses are presented for the laser-generated guided elastic waves in hollow cylinders. The transient wave-

forms excited by the ablation source (AS) and the evaporation source { ES), due to the ablation and the evaporation of oil induced by im-

pinging laser pulse, are calculated numerically by modeling different time-dependencies, i.e. the former is considered as Heaviside step

function and the latter s assumed to be Dirac Delta function. Instead of using classical integral transform, the method of eigen-function ex-

pansion 18 employed, by which time-dependent displacement at the outer surface of hollow cylinders will be expressed by summation of lon-

gitudinal and flexural type modes. This formula is particularly suitable for analyses of generation efficiency of each guided elastic mode.

And the waveform of total radial displacements were analyzed using a short-time Fourier transform (STFT).

Keywords: eigen-function, guided elastic wave, longitudinal, flexural, evaporation source, ablation source.

Corrosion and pitting defects in pipe-work are
major problems in the oil, gas, chemical and other in-
dustries. They may lead to serious consequences if
they would not be detected in time. In order to in-
spect the tube efficiently, many researchers are ex-
ploring the use of ultrasonic guided waves for pipe in-

(1~8] ultrasonic guided wave

spection However,
propagation and reflection in tubing is still not com-
pletely understood. The first exact and complete solu-
tion of the problem of time harmonic waves in a hol-
low cylinder satisfying traction free boundary condi-
tions on its lateral boundaries was presented by
Gazist? using elasticity theory in 1959. For the gen-
eration of ultrasonic guided waves in heat exchanger
tubing, Silk and Bainton!!!

ultrasonic probes to access the inside of the tube.

investigated piezoelectric

Their objective was mainly to generate and use the
L(0,1) mode. But Alleyne et al. (2,3] suggested the
use of the (0, 2) mode, which is the fastest mode in
a non-dispersive region of frequency range to mini-
mize dispersion effects over long distances. Recently,
Li and Rose!®7! studied excitation and propagation of
non-axisymmetric guided waves in a hollow cylinder
by using the normal mode expansion method, 1i.e.
eigen-function expansion method, and their research-
es focused on the variance of angular profiles for dif-
ferent propagating distance of the guided wave excited
by non-axisymmetric partial loading such as an angle

beam source. We!®! have studied the influence of the
spatial distribution of laser beams to the generation of
guided waves in a hollow cylinder and given the nu-
merical simulations of the propagation of guided
waves when the laser beams beat on the outer surface
of a hollow cylinder axisymmetrically. In addition,
the research of using the non-axisymmetric modes for
pipe inspection is in progressm.

Up to now, ultrasonic guided waves are mainly
excited and received by piezoelectric transducers for
pipe inspection. However, this method of contact
sometimes may be inconvenient in practical situations
such as inspection of on-line chemical pipe. There-
fore, it is necessary to develop and apply non-contact
methods, such as electromagnetic acoustic transducers
(EMAT) 1) and laser ultrasonic technique! !,
Our work is focused on laser-generated guided wave
in hollow cylinders for pipe inspection. However, a
main disadvantage of laser-generated ultrasonic test-
ing is that multiple guided modes can be excited at the
same time by the laser pulse. Due to dispersion of
guided waves, the waveforms will be distorted in
space and in time. This complicates analysis of the
waveforms in the process of detection. Even though,
this complexity makes recognition of some type of de-
fects impossible. Therefore, it is necessary to clarify
dynamic response to the laser pulses for generation of
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ultrasonic guided waves.

In this paper, we present numerical simulations
for guided waves generated by impinging laser pulse
in a hollow cylinder. The laser pulse is assumed to be
radial incident on outer surface of the hollow cylin-
der. The transient waveforms excited from different
acoustic sources, due to the ablation and the evapora-
tion of oil induced by laser pulse, are calculated nu-
merically by modeling different time-dependencies, 1.
e. the former is considered as Heaviside step function
and the latter is assumed to be Dirac Delta function.
On the other hand, instead of using classical integral
transform techniques to solve the transient problem,
the method of eigen-function expansion is employed,
by which the time-dependent radial displacement at
the outer surface of hollow cylinders will be expressed
by summation of longitudinal and flexural type
modes. This formula is particularly suitable for analy-
ses of generation efficiency of each guided elastic
mode. At last, the waveforms of total radial displace-
ments were analyzed using a short-time Fourier trans-
form(STFT) and the plots of time-frequency analysis
were given.

1 Elastodynamics theory in hollow cylinders

The motion of an isotropic, homogeneous elastic
body with externally applied force density f(r, t) in
the body V and force density s(r, t) at the surface
>, respectively, is governed by elastodynamic equa-
tion

Luw)=(A + p)V(V+: u) + pu Viu
2
aTl; - of(r,t),
with the boundary condition

B(u)=(A(Vu) + p[Vu+ (Vu)']) - n

=s(r,z), rez, (1b)

where A and u are the Lamé constants of the materi-

rc Vv, (la)

al, u(r,t) is displacement field vector and the su-

perscript T indicates the transposition of a tensor. Be-
fore considering the case of forced motion, we discuss
first the free vibration of a hollow cylinder with f(r,
t)=01n Eq. (1) with the stress-free boundary con-
ditions at the outer and inner surfaces

:0’
b

Ore =0,

(2a)

Orr = 0’ Or
r r=a,b
where a and b are the inner and outer radii, respec-

r=a,b

=d,

tively, as shown in Fig. 1. If the length of the hol-
low cylinder is 2/ and rigid-smooth boundary condi-
tions are applied to the surfaces * = = [, one has

=0, o, =0, oy =0.
=%/ z=zx/ z=*/
(2h)

Note that it is not possible to obtain an analytical so-

(14] if the traction-

lution for the eigen-value problem
free or rigid boundary conditions are employed. If the
hollow cylinder is long enough or the detection spot is
far from the boundary, the effect of the boundary
conditions on propagation of the guided waves is neg-
ligible, which has been proven in our numerical anal-
yses. If scattering of the boundary is considered, one
has to take a real boundary condition. In addition to
these boundary conditions, there are also the initial
conditions

u(r,t):O, %L_t):o

o for t+<C0.

(3)

This problem has been exhaustively examined in
Ref. [9] and three classes of guided wave modes
propagating in hollow cylinders: (1) the longitudinal
axially symmetric modes, L(0, m) (m =1, 2, 3, 4,

--); (2) the torsional axially symmetric modes,
TO,m) (m=1,2,3,4,-); and (3) the flexural
non-axially symmetric modes, F(n,m) (n, m =1,
2,3,4, ). The group velocity curves of the first six
branches of L(0, m ) and F(1, m ) are shown in
Fig. 2. The values of the geometry and material
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Fig. 1. A hollow cylinder with outer radius
b, wall thickness A, and length 2/.
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Fig. 2. The group velocity curves of first six branches of L(0, n) and F(1, m) with OD=
88.7 mm and the wall thickness £ =5.5 mm.
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parameters used in all numerical simulations are the
thickness A = 5. 5 mm, OD = 88. 7 mm, the
Poisson s ratio ¥ =0.28, the Lamé constant pn=8.4
GPa and the density p=7.8x 10’ kg/m®.

For a finite length hollow cylinder, the wave-
number £ in the g-direction is restricted to a set of

discrete real irrational numbers,

Ek:kn-/l (k:172’37) (4)

There exist infinite values of eigen-frequency
W, for each value of &, which is decided by the
dispersive equation. Note that the mode designation
in this paper follows the notations used by Meit-
zler'™™) and Zemannek!'®’, which appears to be used
as a standard system in the literature.

2 Eigen-function expansion

The eigen-value problem of the linear differential
operator L is defined by

L[unmk] == Wimkunmk’ r e Vv (53)

Blu,,l =0, rez>. (5b)

It has been shown that the eigen-values are real and
(17

non-negative ! Furthermore, the linear differential

operator L is self-adjoint under the boundary operator
BV 8! Therefore, the eigenfunctions u,,,; form an

orthogonal set, i.e.
J dV*{O, nF por m#Aqor kFj
Pt " Wpoy My n=p, m=q and kF~j

.-
(6a)
where M, is the norm of u,,,;
{ b p2n
M, :J J J ot (7, 0, 2)
—{Yav
s Uy (7, 0,2)rdrdfdz. (6b)

The eigen-function corresponding to the wave-
number &, and eigen-frequency w,,.; 15

[/
unmlz(r’ 0~ ;) = “:,,,k(ry 0a Z)er + u,,,,lk(r, (9, Z)eg

+ou (r, 0, 2)e,, (7a)
where

w, (r,0,x) = R, (r, &, w,m)cosndcoséz,

(7b)
* (r.0.:) =R’ Ysinnd

u nmk ra U,z - nmk ( T, Ei’ s Wopmp /) SINT COS&Z ’
(7¢)

w, (r.0,2) = R, .(r, &, @, )cosnfsinéz .
(7d)

Hence the solution of non-homogeneous Eq. (1) can
be expanded by eigen-function series

u(r7t9’z’i) = Z:(bmlk(t)unmk(r’e‘ :)' (83)

nmk

where

t
q71m}z(f) = +J @nmk(r)Sinwnmk(l - T)df;
Mnm}zwnmk 0
(8b)
¢7mxk(t) :jvf(r; t) * u,,mk(r)(lv

+fs<r,f) cw, (r)dS. (8¢)
S

Generally, two methods, the integral transform
and the eigen-function expansion, are used to study
the transient motion of an elastic body in elastody-
namics. Compared with the former, the latter is more
suitable to study the guided waves in thin plates!"”’
and hollow cylinders. The transient displacement
field u(r, ¢) is simply the summation of several low-
er guided modes, if only several guided wave modes

will be excited in thin plates and tubes.
3 Laser-generated guided waves

In detection of metal tubes by laser-based ultra-
sound, the laser beam can be focused to sufficiently
high power densities at the metal surface so that ma-
terial ablation and subsequent plasma formation are

12.3] have discussed the

caused. Hutchins et al.!
mechanism of acoustic generation from ablation and
plasma formation. The ablation source (AS) is domi-
nated by a normal force mono-pole with a time depen-
dence that approximates to a Heaviside step function
H(t). For non-destructive detection, a thin coating
of oil at the generation spot can be added to increase
the acoustic generation efficiency from the laser pulse
with lower power densities. In this case, evaporation
of the oil becomes dominant sources. The generation
mechanism of acoustic sources by evaporation of the
oil is that momentum is transferred from the evapo-
rating particles to the solid surface. The evaporating
source (ES) is dominated by a normal mono-pole
force with a time dependence of Dirac Delta function
8 ()12 131 Under the above two cases, the acoustic
source can be considered to be located at the surface
with the bulk force density f =0 and the surface force
density s is radial force.

Note that the Dirac Delta function is the deriva-
tive of the Heaviside step function, so that the wave-
form generated by the ES is the derivative of that
generated by the AS. For simplicity, we presume
that the laser pulse has a Gaussian distribution along
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axis ¥ with the spot radius d and the center of the
laser spot is located at = =0.

Based on analyses above, the surface force in-

duced by the AS can be shown as
= b~ '6(8)exp( — =*/d*YH(¢)e,.
(9)

Hence, from Eq. (8), the radial displacement of the
particle on the outer surface is

s(r,0,2,¢t)

r=

- E[Rr k(b &y w }\»)]2
05,0, 7, 0) = 3 T e
nmk Z(U nmanmk

(1 = cosw,ut ) *cosnf+coséz, (10a)
where € is defined by
!
e = J exp(— 2?/d?)cosézdz . (10b)
-1

As the hollow cylinder is of infinite length, i.e.
[—> 0, interval between two successive roots A&, =
7/ approaches zero. Therefore, in the limit of [ ap-
proaching infinity, the summation over the index £ in
Eq.(10a) will be replaced by the integral over the
continuous eigen-value &

” S N [Rr b’ ’ mn)]z
ur(b,ﬁ,z,t) :J dsz £ nm( E w
0 1

n=0m= ﬂwimMnm
+ (1 — cosw,,,t) * cosnf « coséz,
(11a)
where
b
Mrlm = T[J p[R:mxkz + Rimkz + R:mkz]rdr'
(11b)

For the ES, the surface force density can be written
as

s(r,0,z2,t) =h:b*16(0)exp( ~22/d*)8(t)e,.

(12)
In the limit of / approaching infinity, the radial dis-
placement of the particle on the outer surface of a hol-
low cylinder is

ShS Rr b’ s Yam 2
ur(b,e,z,t) :J dszz El: mn( &, w )]

(e8]
0 n=0m=1 ﬂ-(Unmj\4nm

cosnf + coséz, (13)

where ¢ and M,,, are the same as in Eq. 11(a). In-

* Sinw,,,t *

deed, Eq. (13) can be obtained by taking one-order
derivative of Eq. (11a).

4 Numerical simulations

In our numerical simulations, all waveforms are

received at the outer surface of a hollow cylinder and
the geometry and material parameters are the thick-
ness h = 5.5 mm, OD=88.7 mm, the spot radius
d =1.0mm, the Poisson’s ratio ¥ =0.28, the [Lamé
constant g = 8. 4 GPa and the density p = 7. 8 X
10° kg/m>.

Figs. 3 and 4 show the radial displacements from
two longitudinal type modes (1.(0, 1) and L(0,2))
and four flexural type modes (F(1,1), F(1, 2),
F(2,1) and F(2, 2)) generated by the AS and the
ES, respectively. The total radial displacements and
their distributions of time-frequency analysis from all
longitudinal and flexural type modes generated by the
AS and the ES are indicated in Figs. 5 and 6 with the
source-receiver distance ¥ = 0. 6 m and propagating
directions 8 =0°.

Figs. 3(a) and 4(a) have a common feature that
is the early arrival (¢ = 110 us) of a relatively low-
amplitude and lower frequency component because the
1.(0, 1) mode propagates at a large group velocity C,
~C, at lower frequency (see Fig. 2(a)). But Fig.
4(a) has a feature, which is distinct from that of
Fig. 3(a). In Fig. 4(a), a sharp spike of very high
frequency arrives at about 180 us, which comes from
higher frequency of the L (0,1) mode propagating at
a relatively large and unvarying group velocity, but
Fig. 3(a) does not have this spike. The difference
between Fig. 3(a) and Fig. 4(a) can be contributed
to that the signal 8 (#) has plenty of components of
high frequency while the dominant components of sig-
nal H(t) are components of low frequency. The
same difference occurs between the modes F(n, 1)
generated by the AS and those generated by the ES.
The features of transient waveform from other modes
can also be explained based on the dispersion curves
and the frequency spectrum of the source.

The waveforms of 1.(0,2) generated by the ES
(Fig. 3(b)) and AS (Fig. 4(b)) have a common
feature that a nearly constant frequency and large am-
plitude component was received after ¢ =360 us. But
the former has a relatively high frequency component
superposed in a low frequency component received be-
tween 200 ps~ 350 us which could not be found in the
latter.

The waveform of F(1, 1) generated by the ES
(Fig.4(c)) has two features. The first feature is that
a spike was received about ¢ = 180 us. The second
feature is that a relatively low frequency component
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The radial displacements from two longitudinal type modes and four flexural type modes generated by the AS with the source-re-

ceiver distance » =0.6 m and the propagating direction # =0": (a) L{0,1); (b) 1(0,2); (c) F(1,1); (d) F(1,2); (e) F(2,1); and

() F(2.2).

superposed in a very low frequency and very large am-
plitude component was received after £ =200 ps. But
only a very low frequency and very large amplitude
component could be found in that generated by the
AS(Fig. 3(c)). We can find the waveform of
F(1, 1) either generated by the ES or the AS has the
largest amplitude among all guided wave modes which
means that mode F(1, 1) contributes most to the total
energy.

The waveforms in Fig. 5(a) and Fig. 6(a) were
analyzed using the STFT. A 0.256 ms Kaiser win-
dow was used in the computations of the STFT. The
STFT images give the arrival time of each frequency
component and, therefore, directly show the relation-
ship between the group velocity and frequency. Im-

portantly, we can observe the distributions of energy
either among all modes or in the frequency domain
qualitatively from the STFT images. Comparing
Fig. 6(b) with Fig. 5(b), we can find that the at-
tenuation of the high-order modes generated by the
AS is far faster than that of the high-order modes
generated by the ES. And the modes 1.(0, 1) and
F(#n,1) have dominant energy, especially to the
guided waves generated by the AS. The modes F(n,
2) and F(n,4) could not be observed from all STFT
images, because their energy is too small. From the
STFT images, we also can easily find the total dis-
placement generated by the ES has richer frequency
components than that generated by the AS, and the
former has higher frequency components than the
latter.



Progress i Natural Scence Vol 13 Noo4 o 2003 293
Jr— - - —— 1.50
(a) L) (b) L(0.2)
=06 m =0.6m
0751

18]
T
e —

Radial displacement (arb units)

L !
- i
-1 . I . I
4] 100 200 200 400 500
Time (us)
5 \
= Fel 1 |
3 37
-E =U6m
=z Of——— i |
B ‘ ‘
= 3 ¥
v v
e
7,3; -0
3
z Y
=
Iz
= |2 . . . .
0 100 200 300 400) 500
Time (ps)
I S S
= (e) Ft2.1
g /P\ -={),
= 6 I \ 6m
2 »‘
— r\ w \r
T OfF—— 4*\ /\/\ ! /
g N\ \' ’ ooy
L Y
2 b
2z O L
£ |
L=} I
= -2 |
< L
S S . ‘ .
0 100 200 300 400 S00

Time (us)

Fig. 4.

cetver distanee =~ 0 6 em and the propag:

g direction 4 =07,

0.1
) () = ().76 m
‘= =0
=
£ 00— _
3 B
~ \,
E 0
3 .
g -01F \\
= e
2 \
2 _02t \
= |
3 \
—0.3 ‘ . s . ]
(8] 100 200 300 400 500

Time (us)

Fig. 5.

:=0.6m and the propagating directon 0 -

We give the transient waveforms of the mode
7,

from which it is clearly seen that the amplitude of the

F(3

, 1) received at four different points in Fig

(o) L(

Radial disptacement (arb.units)

Radial displacement tarb.units)

Radial displacement (arb units)

(0,

Frequency (MHz)

0.00 fF—~—~_"

[

-075¢
-1.50 . . . "
0 100 200 300 400 500
Time (us)
10
W F(1.2)
=l
05k om
A -
00F — — Y A [hme =
Vo \J
¥
-0S5+ \j
~10 . . . .
0 100 200 300 400 SN0
Time (ps)
0.36
| (f F(2.2)
! -
i =06m
0.1 8L
f
b
Iy -
M | N/
) F — !
0.00 ,»\} \\/ \/v \/
—-0.18F
—0.36 . . . .
0 100 200 300 400 500

i (b) L(0,2)

5

Time {(Hs)

The radil displacements from two longitndinal type nodes and four flexural tvpe modes generated by the ES with the sonrce-re-

(¢) F(1,1):

(e) F(2,1); and (f) F(2,2).

100

400

200
Time (s)

300

Total radial displacements from all longuoding and slexural type modes generated by the AS with the source-recerver distance

0° () el the corresponding distribution of ume-frequency (b)

displacement becomes smaller and the waveform ex-

pands along with the propagation of the guided waves

because of the dispersion effects.
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Conclusion

We have presented some numerical simulations of

the guided waves generated by pulsed laser in hollow

cylinders. Two types of acoustic source, the AS and

the ES, have been discussed,

The

respectively.

waveforms of total radial displacements were analyzed
using the STFT. We find modes 1.{(0, 1) and F(n,

1) have dominant energy among all guided modes

generated by the laser pulse. The total displacements

generated by the ES have richer frequency compo-
nents than that generated by the AS. And the disper-

sion effects have been ohserved by calculating the dis-

placements of mode F (3, 1) with four different

source-receiver distances.
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